La brevità, dunque, di tali linee si riduce a tale, che di gran lunga supera il bisogno per far che il proietto, per leggerissimo che sia, ritorni, anzi pur si mantenga, sopra la circonferenza.
SAGR. Io resto molto ben capace di tutto il discorso e della forza con la quale egli strigne: tuttavia mi pare che chi volesse travagliarlo ancora, potrebbe muoverci qualche difficultà, con dire che delle due cause che rendono la scesa del mobile piú e piú tarda in infinito, è manifesto che quella che depende dalla vicinità al primo termine della scesa, cresce sempre con la medesima proporzione, sí come sempre mantengono l'istessa proporzione tra di loro le parallele etc.; ma che la diminuzion della medesima velocità dependente dalla diminuzion della gravità del mobile (che era la seconda causa) si faccia essa ancora con la medesima proporzione, non par cosí manifesto. E chi ci assicura che ella non si faccia secondo la proporzione delle linee intercette tra la tangente e la circonferenza, o pur anco con proporzion maggiore?
SALV. Io avevo preso come per vero che le velocità de i mobili naturalmente descendenti seguitassero la proporzione delle loro gravità, in grazia del signor Simplicio e d'Aristotile, che in piú luoghi l'afferma come proposizione manifesta; voi, in grazia dell'avversario, ponete ciò in dubbio, ed asserite poter esser che la velocità si accresca con proporzion maggiore, ed anco maggiore in infinito, di quella della gravità, onde tutto il discorso passato vadia per terra; resta a me, per sostenerlo, il dire che la proporzione delle velocità è molto minore di quella delle gravità, e cosí non solamente sollevare, ma fortificare, quanto si è detto: e di questo ne adduco per prova l'esperienza, la quale ci mostrerà che un grave anco ben trenta e quaranta volte piú di un altro, qual sarebbe, per esempio, una palla di piombo ed una di sughero non si moverà né anco a gran pezzo piú veloce il doppio.
| |
Simplicio Aristotile
|