Pagina (294/608)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Io, se vi è in piacere, produrrò le ragioni dell'uno e dell'altro, perché le ho lette piú d'una volta con attenzione; e voi potrete esaminar la lor forza e dirne il vostro parere.
      SALV. Essendoché il nostro principal fine è di produrre e ponderar tutto quello che è stato addotto in pro e contro a i due sistemi Tolemaico e Copernicano, non è bene passar cosa alcuna delle scritte in cotal materia.
      SIMP. Comincerò dunque dall'instanze contenute nel libretto delle conclusioni, e poi verrò all'altre. Primieramente, dunque, l'autore con grand'acutezza va calcolando quante miglia per ora fa un punto della superficie terrestre posto sotto l'equinoziale, e quante si fanno da altri punti posti in altri paralleli; e non contento di investigar tali movimenti in tempi orarii, gli trova anco in un minuto d'ora, né contento del minuto, lo ritrova sino a uno scrupolo secondo; ma piú, e' va insino a mostrar apertissimamente quante miglia farebbe in tali tempi una palla d'artiglieria, posta nel concavo dell'orbe lunare, suppostolo anco tanto grande quanto l'istesso Copernico se lo figura, per levar tutti i sutterfugii all'avversario: e fatta quest'ingegnosissima ed esquisitissima supputazione, dimostra che un grave cadente di lassú consumerebbe assai piú di sei giorni per arrivar sino al centro della Terra, dove naturalmente tendono tutte le cose gravi. Ora, quando dall'assoluta potenza divina o da qualche angelo fusse miracolosamente trasferita lassú una grossissima palla di artiglieria, e posta nel nostro punto verticale e di lí lasciata in sua libertà, è ben, per suo e mio parere, incredibilissima cosa che ella nel descendere a basso si andasse sempre mantenendo nella nostra linea verticale, continuando di girare con la Terra intorno al suo centro per tanti giorni, descrivendo sotto l'equinoziale una linea spirale nel piano di esso cerchio massimo, e sotto altri paralleli linee spirali intorno a coni, e sotto i poli cadendo per una semplice linea retta.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Dialogo sopra i due massimi sistemi del mondo tolemaico e copernicano
di Galileo Galilei
Einaudi Torino
1970 pagine 608

   





Tolemaico Copernicano Copernico Terra Terra