Prendasi ora qualsivoglia altro punto nella circonferenza, e sia H, al quale concorrano le due AH, BH: dico parimente, come AC a CB, così essere AH ad HB. Prolunghisi HB sino alla circonferenza in I, e congiungasi IF: e perché già si è visto, come AB a BG, così essere CB a BF, sarà il rettangolo ABF eguale al rettangolo CBG, cioè IBH, e però come AB a BH, così IB a BF; e sono gli angoli al B eguali; adunque AH ad HB sta come IF, cioè EF, ad FB, ed AE ad EB.
Dico, oltre a ciò, che è impossibile che le linee che abbiano tal proporzione, partendosi da i termini A, B, concorrano a verun punto o dentro o fuori del cerchio CEG. Imperò che, se è possibile, concorrano due tali linee al punto L, posto fuori, e siano le AL, BL, e prolunghisi la LB sino alla circonferenza in M, e congiungasi MF. Se dunque la AL alla BL è come la AC alla BC, cioè come la MF alla FB, aremo due triangoli ALB, MFB, li quali intorno alli due angoli ALB, MFB hanno i lati proporzionali, gli angoli alla cima nel punto B eguali, e li due rimanenti FMB, LAB minori che retti (imperò che l'angolo retto al punto M ha per base tutto il diametro CG, e non la sola parte BF; e l'altro al punto A è acuto, perché la linea AL, omologa della AC, è maggiore della BL, omologa della BC); adunque i triangoli ABL, MBF son simili, e però come AB a BL così MB a BF, onde il rettangolo ABF sarà eguale al rettangolo MBL: ma il rettangolo ABF s'è dimostrato eguale al CBG: adunque il rettangolo MBL è eguale al rettangolo CBG, il che è impossibile: adunque il concorso non può cader fuor del cerchio.
| |
|