[v. figura 9]In una descrizzione simile a quell'altra, siano due essagoni circa il comune centro L, che siano questi ABC, HIK, con le linee parallele HOM, ABc, sopra le quali si abbiano a far le revoluzioni; e fermato l'angolo I del poligono minore, volgasi esso poligono sin che il lato IK caschi sopra la parallela, nel qual moto il punto K descriverà l'arco KM, e 'l lato KI si unirà con la parte IM: tra tanto bisogna vedere quel che farà il lato CB del poligono maggiore. E perché il rivolgimento si fa sopra il punto I, la linea IB col termine suo B descriverà, tornando indietro, l'arco Bb sotto alla parallela cA, tal che quando il lato KI si congiugnerà con la linea MI, il lato BC si unirà con la linea bc, con l'avanzarsi per l'innanzi solamente quanto è la parte Bc e ritirando in dietro la parte suttesa all'arco Bb, la quale vien sopraposta alla linea BA. Ed intendendo continuarsi nell'istesso modo la conversione fatta dal minor poligono, questo descriverà bene e passerà sopra la sua parallela una linea eguale al suo perimetro; ma il maggiore passerà una linea minore del suo perimetro la quantità di tante linee bB quanti sono uno manco de' suoi lati; e sarà tal linea prossimamente eguale alla descritta dal poligono minore, eccedendola solamente di quanto è la bB. Qui dunque senza veruna repugnanza si scorge la cagione per la quale il maggior poligono non trapassi (portato dal minore) con i suoi lati linea maggiore della passata dal minore; che è perché una parte di ciascheduno de' lati si soprappone al suo precedente conterminale.
| |
|