SALV. Perché posso con poche parole dargli sodisfazzione, non voglio lasciar di servirla. Però, facendone un poco di figura [v. figura 17], intenda V. S. il peso il cui centro di gravità sia A, appoggiato sopra l'orizonte co 'l termine B, e nell'altro sia sostenuto col vette CG, sopra 'l sostegno N, da una potenza posta in G; e dal centro A e dal termine C caschino, perpendicolari all'orizzonte, AO, CF: dico, il momento di tutto il peso al momento della potenza in G aver la proporzion composta della distanza GN alla distanza NC e della FB alla BO. Facciasi, come la linea FB alla BO, così la NC alla X: ed essendo tutto il peso A sostenuto dalle due potenze poste in B e C, la potenza B alla C è come la distanza FO alla OB; e componendo, le due potenze B, C insieme, cioè il total momento di tutto 'l peso A, alla potenza in C è come la linea FB alla BO, cioè come la NC alla X: ma il momento della potenza in C al momento della potenza in G è come la distanza GN alla NC: adunque, per la perturbata, il total peso A al momento della potenza in G è come la GN alla X. Ma la proporzione di GN ad X è composta della proporzione di GN ad NC e di quella di NC ad X, cioè di FB a BO; adunque il peso A alla potenza che lo sostiene in G ha la proporzione composta della GN ad NC e di quella di FB a BO: ch'è quello che si doveva dimostrare.
Or tornando al nostro primo proposito, intese tutte le cose sin qui dichiarate, non sarà difficile l'intender la ragione onde avvenga che un prisma o cilindro solido, di vetro, acciaio, legno o altra materia frangibile, che sospeso per lungo sosterrà gravissimo peso che gli sia attaccato, ma in traverso (come poco fa dicevamo) da minor peso assai potrà tal volta essere spezzato, secondo che la sua lunghezza eccederà la sua grossezza.
| |
|