[v. figura 18] Imperò che figuriamoci il prisma solido ABCD, fitto in un muro dalla parte AB, e nell'altra estremità s'intenda la forza del peso E (intendendo sempre, il muro esser eretto all'orizonte, ed il prisma o cilindro fitto nel muro ad angoli retti): è manifesto che, dovendosi spezzare, si romperà nel luogo B, dove il taglio del muro serve per sostegno, e la BC per la parte della leva dove si pone la forza; e la grossezza del solido BA è l'altra parte della leva, nella quale è posta la resistenza, che consiste nello staccamento che s'ha da fare della parte del solido BD, che è fuor del muro, da quella che è dentro: e per le cose dichiarate, il momento della forza posta in C al momento della resistenza, che sta nella grossezza del prisma cioè nell'attaccamento della base BA con la sua contigua, ha la medesima proporzione che la lunghezza CB alla metà della BA; e però l'assoluta resistenza all'esser rotto, che è nel prisma BD (la quale assoluta resistenza è quella che si fa col tirarlo per diritto, perché allora tanto è il moto del movente quanto quello del mosso), all'esser rotto con l'aiuto della leva BC, ha la medesima proporzione che la lunghezza BC alla metà di AB nel prisma, che nel cilindro è il semidiametro della sua base. E questa sia la nostra prima proposizione. E notate, che questo che dico, si debbe intendere, rimossa la considerazione del peso proprio del solido BD, il qual solido ho preso come nulla pesante: ma quando vorremo mettere in conto la sua gravità, congiugnendola col peso E, doviamo al peso E aggiugnere la metà del peso del solido BD; sì che essendo, v. g., il peso di BD due libbre, e 'l peso di E libbre dieci, si deve pigliare il peso E come se fusse undici.
| |
Imperò
|