SAGR. Chiarissima e breve dimostrazione, concludente la verità e necessità di una proposizione che, nel primo aspetto, sembra assai remota dal verisimile. Bisognerebbe dunque alterare assai la proporzione tra la lunghezza e la grossezza del prisma maggiore, con l'ingrossarlo o scorciarlo, acciò si riducesse allo stato ancipite tra 'l reggersi e lo spezzarsi; e l'investigazione di tale stato penso che potesse esser altrettanto ingegnosa.
SALV. Anzi più presto d'avvantaggio, come anco più laboriosa; ed io lo so, che vi spesi non piccol tempo per ritrovarla, ed ora voglio participarvela.
Dato dunque un cilindro o prisma di massima lunghezza da non esser dal suo proprio peso spezzato, e data una lunghezza maggiore, trovar la grossezza d'un altro cilindro o prisma che sotto la data lunghezza sia l'unico e massimo resistente al proprio peso.
[v. figura 26]Sia il cilindro BC massimo resistente al proprio peso, e sia la DE lunghezza maggiore della AC: bisogna trovare la grossezza del cilindro che sotto la lunghezza DE sia il massimo resistente al proprio peso. Sia delle lunghezze DE, AC terza proporzionale I, e come DE ad I, così sia il diametro FD al diametro BA, e facciasi il cilindro FE; dico, questo esser il massimo ed unico, tra tutti i suoi simili, resistente al proprio peso. Delle linee DE, I sia terza proporzionale M, e quarta O, e pongasi FG eguale alla AC: e perché il diametro FD al diametro AB è come la linea DE alla I, e delle DE, I la O è quarta proporzionale, il cubo di FD al cubo di BA sarà come la DE alla O; ma come il cubo di FD al cubo di BA, così è la resistenza del cilindro DG alla resistenza del cilindro BC; adunque la resistenza del cilindro DG a quella del cilindro BC è come la linea DE alla O. E perché il momento del cilindro BC è eguale alla sua resistenza, se si mostrerà, il momento del cilindro FE al momento del cilindro BC esser come la resistenza DF alla resistenza BA, cioè come il cubo di FD al cubo di BA, cioè come la linea DE alla O, aremo l'intento, cioè il momento del cilindro FE esser eguale alla resistenza posta in FD. Il momento del cilindro FE al momento del cilindro DG è come il quadrato della DE al quadrato della AC, cioè come la linea DE alla I; ma il momento del cilindro DG al momento del cilindro BC è come il quadrato DF al quadrato BA, cioè come il quadrato di DE al quadrato della I, cioè come il quadrato della I al quadrato della M, cioè come la I alla O; adunque, per l'egual proporzione, come il momento del cilindro FE al momento del cilindro BC, così è la linea DE alla O, cioè il cubo DF al cubo BA, cioè la resistenza della base DF alla resistenza della base BA: che è quello che si cercava.
| |
|