[v. figura 45]E per meglio dichiararmi, intendasi la linea AB, perpendicolarmente eretta sopra l'orizonte AC; pongasi poi la medesima in diverse inclinazioni verso l'orizonte piegata, come in AD, AE, AF, etc.: dico, l'impeto massimo e totale del grave per descendere esser per la perpendicolare BA, minor di questo per la DA, e minore ancora per la EA, e successivamente andarsi diminuendo per la più inclinata FA, e finalmente esser del tutto estinto nella orizontale CA, dove il mobile si trova indifferente al moto e alla quiete, e non ha per se stesso inclinazione di muoversi verso alcuna parte, né meno alcuna resistenza all'esser mosso; poiché, sì come è impossibile che un grave o un composto di essi si muova naturalmente all'in su, discostandosi dal comun centro verso dove conspirano tutte le cose gravi, così è impossibile che egli spontaneamente si muova, se con tal moto il suo proprio centro di gravità non acquista avvicinamento al sudetto centro comune: onde sopra l'orizontale, che qui s'intende per una superficie egualmente lontana dal medesimo centro, e perciò affatto priva d'inclinazione, nullo sarà l'impeto o momento di detto mobile.
Appresa questa mutazione d'impeto, mi fa qui mestier esplicare quello che in un antico trattato di mecaniche, scritto già in Padova dal nostro Academico sol per uso de' suoi discepoli, fu diffusamente e concludentemente dimostrato, in occasione di considerare l'origine e natura del maraviglioso strumento della vita; ed è con qual proporzione si faccia tal mutazione d'impeto per diverse inclinazioni di piani: come, per esempio, del piano inclinato AF tirando la sua elevazione sopra l'orizonte, cioè la linea FC, per la quale l'impeto d'un grave ed il momento del descendere è il massimo, cercasi qual proporzione abbia questo momento al momento dell'istesso mobile per l'inclinata FA; qual proporzione dico esser reciproca delle dette lunghezze: e questo sia il lemma da premettersi al teorema, che dopo io spero di poter dimostrare.
| |
Padova Academico
|