Pagina (197/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

     
     
      [v. figura 47]SAGR. Parmi che assai chiaramente e con brevità si poteva concludere il medesimo, essendosi già concluso che la somma del moto accelerato de i passaggi per AC, AB è quanto il moto equabile il cui grado di velocità sia sudduplo al grado massimo CB; essendo dunque passati li due spazii AC, AB con l'istesso moto equabile, già è manifesto, per la proposizione prima del primo, che i tempi de' passaggi saranno come gli spazii medesimi.
     
      COROLLARIODi qui si ricava che i tempi impiegati a scendere su piani diversamente inclinati, purché però abbiano la medesima elevazione, stanno tra di loro come le rispettive lunghezze.
     
      TEOREMA 4. PROPOSIZIONE 4
      I tempi dei moti su piani di eguale lunghezza, ma di diversa inclinazione, stanno tra di loro in sudduplicata proporzione delle elevazioni dei medesimi piani permutatamente prese [in un rapporto pari alla radice quadrata del rapporto inverso tra le elevazioni].
     
      TEOREMA 5. PROPOSIZIONE 5
      La proporzione tra i tempi delle discese su piani di diversa inclinazione e lunghezza e di elevazione pure diseguale, è composta dalla proporzione tra le rispettive lunghezze e della sudduplicata proporzione delle elevazioni permutatamente prese.
     
      [v. figura 48]
     
      TEOREMA 6. PROPOSIZIONE 6
      Se dal più alto o dal più basso punto di un cerchio eretto sull'orizzonte si conducono piani inclinati qualsiasi fino alla circonferenza, i tempi delle discese lungo tali piani saranno eguali.
     
      COROLLARIO 1
      Di qui si ricava che i tempi delle discese lungo tutte le corde condotte dagli estremi C o D, sono tra di loro eguali.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293