Pagina (209/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Presi infatti due punti qualsiasi D ed E, ad eguale distanza dall'angolo B, potremo ricavare che la discesa per DB avverrà in un tempo eguale al tempo del moto riflesso per BE. Tracciata la DF, essa sarà parallela alla BC; è noto infatti che il moto di discesa per AD viene riflesso lungo la DF: ora, se dopo D il mobile si muovesse sull'orizzontale DE, l'impeto in E sarebbe eguale all'impeto in D; dunque, da E salirebbe fino in C; dunque, il grado di velocità in D è eguale al grado [di velocità] in E.
      Da ciò, pertanto, possiamo ragionevolmente asserire che, se ha luogo la discesa su un qualche piano inclinato e dopo di essa ha luogo la riflessione su un piano ascendente, il mobile, in virtù dell'impeto acquistato, salirà fino alla medesima altezza o elevazione dall'orizzonte; ad esempio [v. figura 61], se la discesa si svolge lungo AB, il mobile si muoverà sul piano riflesso BC fino all'orizzontale ACD, non soltanto se i piani avranno eguale inclinazione, ma anche se saranno di inclinazione diseguale, come il piano BD: infatti, abbiamo prima assunto che i gradi di velocità, che si acquistano su piani diversamente inclinati, risultano eguali a condizione che sia eguale la elevazione di quegli stessi piani sull'orizzonte. Se infatti l'inclinazione dei piani EB e BD fosse la medesima, la discesa per EB sarebbe in grado di spingere il mobile sul piano BD fino al punto D; ma tale spinta ha luogo in virtù dell'impeto di velocità acquistato nel punto B, e in B l'impeto è lo stesso, sia che il mobile scenda per AB, sia che scenda per EB; ne risulta allora che il mobile sarà spinto sul piano BD dopo la discesa per AB allo stesso modo che dopo la discesa per EB. Accadrà però che il tempo della salita sul piano BD sarà più lungo del tempo della salita sul piano BC, siccome anche la discesa per EB avviene in un tempo più lungo di quella per AB; del resto, abbiamo già dimostrato che la proporzione dei tempi è eguale a quella delle lunghezze dei piani.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293