Pagina (222/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Se poi intendiamo che al mobile, il quale si muove oltre b verso c con moto equabile, si aggiunga un movimento di discesa perpendicolare secondo la quantità ci, nel tempo bc [esso mobile] si troverà situato nell'estremo i. Ma continuando a muoversi, nel tempo db, cioè [in un tempo] doppio di bc, sarà disceso per uno spazio quattro volte maggiore del primo spazio ci; abbiamo infatti dimostrato nel primo trattato, che gli spazi percorsi da un grave, con moto naturalmente accelerato, sono in duplicata proporzione dei tempi: e parimenti, il successivo spazio eh, percorso nel tempo be, sarà nove [volte maggiore del primo spazio]: sì che risulterà manifesto che gli spazi eh, df, ci stanno tra di loro come i quadrati delle linee eb, db, cb. Si conducano ora dai punti i, f, h le rette io, fg, hl, equidistanti dalla medesima eb: le linee hl, fg, io saranno eguali, ad una ad una, alle linee eb, db, cb; e così pure le linee bo, bg, bl saranno eguali alle linee ci, df, eh; inoltre il quadrato di hl starà al quadrato di fg come la linea lb sta alla bg, e il quadrato di fg starà al quadrato di io come gb sta a bo; dunque, i punti i, f, h si trovano su un unica e medesima linea parabolica. Similmente si dimostrerà che, preso un numero qualsiasi di particole di tempo eguali di qualunque grandezza, i punti, che il mobile mosso di un simile moto composto occuperà in quei tempi, si troveranno su una medesima linea parabolica. È dunque manifesto quello che ci eravamo proposti.
     
      SALV. Questa conclusione si raccoglie dal converso della prima delle due proposizioni poste di sopra.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293