[v. figura 73]Un mobile, infatti, si muova equabilmente con un movimento duplice, e al movimento perpendicolare corrisponda lo spazio ab, mentre al movimento orizzontale compiuto in un egual tempo corrisponda lo spazio bc. Allora, poiché gli spazi ab e bc vengono percorsi nel medesimo tempo con moti equabili, i momenti di tali moti staranno tra di loro come le medesime ab e bc: ma il mobile, che si muove secondo questi due movimenti, descrive la diagonale ac; il momento della sua velocità sarà dunque [rappresentato da] ac. Ma ac è eguale in potenza alle medesime ab e bc; dunque, il momento composto dai due momenti ab e bc sarà, soltanto in potenza, eguale a questi, presi insieme: che è quello che dovevamo mostrare.
SIMP. È necessario levarmi un poco di scrupolo che qui mi nasce, parendomi che questo, che ora si conclude, repugni ad un'altra proposizione del trattato passato, nella quale si affermava, l'impeto del mobile venente dall'a in b essere eguale al venente dell'a in c; ed ora si conclude, l'impeto in c esser maggiore che in b.
SALV. Le proposizioni, Sig. Simplicio, sono amendue vere, ma molto diverse tra di loro. Qui si parla d'un sol mobile, mosso d'un sol moto, ma composto di due, amendue equabili; e là si parla di 2 mobili, mossi di moti naturalmente accelerati, uno per la perpendicolare ab, e l'altro per l'inclinata ac. In oltre, i tempi quivi non si suppongono eguali, ma il tempo per l'inclinata ac è maggiore del tempo per la perpendicolare ab; ma nel moto del quale si parla al presente, i moti per le ab, bc, ac s'intendono equabili e fatti nell'istesso tempo.
| |
Sig
|