Pagina (235/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Ma per spiegarmi più chiaramente, [v. figura 75] figuriamoci la perpendicolare ac all'orizzontale cb; ora, ac è l'altezza e cb è l'ampiezza della semiparabola ab descritta dalla composizione di due movimenti, dei quali l'uno è quello del mobile che scende per ac con moto naturalmente accelerato a partire dalla quiete in a, l'altro è il moto trasversale equabile secondo l'orizzontale ad. L'impeto acquistato in c in virtù della discesa ac è misurato dalla lunghezza della medesima altezza ac; infatti, unico e sempre il medesimo è l'impeto del mobile cadente dalla medesima altezza: invece sull'orizzontale si possono assegnare non un solo, ma innumerevoli gradi di velocità di moti equabili. Per poter distinguere dagli altri e quasi mostrare a dito quel grado di velocità che avrò scelto tra quella moltitudine, prolungherò l'altezza ca verso l'alto e su questo prolungamento segnerò, a seconda di quanto sarà necessario, la sublimità ae: se immagino un [mobile] cadente da essa [sublimità] a partire dalla quiete in e, è manifesto che l'impeto da esso acquistato nell'estremo a sarà pari a quello col quale avrò immaginato muoversi il medesimo mobile deviato sull'orizzontale ad; e che il suo grado di velocità sarà quello col quale, nel tempo della discesa per ea, percorrerà sull'orizzontale uno spazio doppio del medesimo ea. Questo [è l'avvertimento che] mi è sembrato necessario premettere.
      Si avverta, inoltre, che chiamo «ampiezza» della semiparabola ab l'orizzontale cb;
      «altezza», cioè ac, l'asse della medesima parabola;


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293