Pagina (264/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Le parti della f siano, pertanto, n, o, r, s, t; quelle della g [siano] n, o, r, s; quelle della h [siano] n, o, r; infine, le parti della k siano n e o: tutte le parti [cioè la loro somma] segnate da n saranno eguali alla f; tutte quelle segnate da o, saranno eguali alla g; quelle segnate da r, saranno eguali alla h; quelle segnate da s, lo saranno alla k; infine la grandezza t è eguale alla n. Poiché, dunque, tutte le grandezze segnate da n sono tra di loro eguali, il punto del loro equilibrio sarà in d, che divide a metà la bilancia ab; per la medesima ragione, di tutte le grandezze segnate da o il punto di equilibrio è in i; di quelle segnate da r è in c; e quelle segnate da s, hanno il loro punto di equilibrio in m; infine t è appesa in a. Pertanto, sulla bilancia ab, a distanze eguali d, i, c, m, a, sono appese grandezze che si eccedono egualmente e il cui eccesso è eguale alla minima: ma la massima, che risulta composta di tutte le n, pende da d; la minima, invece, cioè t, pende da a; e tutte le altre sono disposte ordinatamente. V'è, inoltre, un'altra bilancia ab, sulla quale sono disposte nel medesimo ordine altre grandezze, eguali alle predette in numero e in grandezza: perciò le bilance ab e ad verranno divise dai centri [di gravità] del composto di tutte le grandezze secondo la medesima proporzione. Ma il centro di gravità delle suddette grandezze è x; perciò x divide le bilance ba e ad secondo la medesima proporzione, in modo che, come bx sta a xa così xa stia a xd; perciò bx è doppia di xa, per il lemma posto sopra.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293