Se in un cono qualsiasi, o in una porzione di cono, si inscrive una figura [costituita] da cilindri aventi eguale altezza, e se ne circoscrive un'altra, e se, inoltre, l'asse del cono viene diviso in modo che la parte compresa tra il punto di divisione e il vertice sia tripla dell'altra; il centro di gravità della figura inscritta sarà più vicino del suddetto punto di divisione alla base del cono, mentre il centro di gravità della figura circoscritta sarà più vicino al vertice del medesimo punto.
[v. figura 92]Sia dunque un cono, il cui asse nm sia diviso in s in modo che ns sia tripla della rimanente sm. Dico, che il centro di gravità di qualsiasi figura, inscritta al cono nel modo che si è detto, si trova sull'asse nm ed è più vicino del punto s alla base del cono; mentre il centro di gravità della figura circoscritta si trova similmente sull'asse nm, ed e piu vicino di s al vertice. Si intenda, pertanto, la figura inscritta [costituita] da cilindri, i cui assi mc, cb, be, ea siano eguali. Ordunque, il primo cilindro, il cui asse è mc, rispetto al cilindro, il cui asse è cb, ha la medesima proporzione che la sua base ha rispetto alla base dell'altro (infatti, le loro altezze sono eguali); ma questa proporzione è eguale a quella che il quadrato cn ha al quadrato nb. E similmente si mostrerà che il cilindro, il cui asse è cb, rispetto al cilindro, il cui asse è be, ha la medesima proporzione che il quadrato bn ha rispetto al quadrato ne; mentre il cilindro, il cui asse è be, rispetto al cilindro, [che sta] intorno all'asse ea, ha la medesima proporzione che il quadrato en ha rispetto al quadrato na.
| |
|