Pagina (292/293)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Si hanno dunque quattro linee proporzionali, hx, xk, xl, xs; e quale è la proporzione che xs ha ad sh, tale è quella che una linea [opportunamente] presa no ha rispetto ai 3/4 della du, cioè a dm, cioè ai 3/4 della hk; inoltre, quale è la proporzione che la [somma di] hx col doppio di xk e col triplo di xl ha rispetto al quadruplo [della somma] delle hx, xk, xl, tale è anche la proporzione che un'altra linea [opportunamente] presa od ha rispetto a du, cioè ad hk: dunque (per le cose che si sono dimostrate) dn sarà la quarta parte della hx, cioè della ad; perciò il punto n sarà il centro di gravità del cono, o della piramide, il cui asse è ad. Sia i il centro di gravità del cono, o della piramide, il cui asse è au. Risulta, dunque, che il centro di gravità del frusto si trova sul prolungamento della linea in dalla parte di n, e proprio in quel punto che col punto n delimita una linea tale, che rispetto ad essa in abbia la medesima proporzione che il frusto staccato ha rispetto alla piramide o al cono, il cui asse è au. Resta pertanto da mostrare che in ha ad no la medesima proporzione che il frusto ha rispetto al cono, il cui asse è au. Ma come il cono, il cui asse è da, sta al cono, il cui asse è au, così il cubo da sta al cubo au, cioè il cubo hx al cubo xk: ma questa medesima proporzione è quella che hx ha ad xs: perciò, scomponendo, come hs sta ad sx, così il frusto, il cui asse è du, starà al cono, o alla piramide, il cui asse è ua. Ma come hs sta ad sx, così pure md sta a on; perciò il frusto sta alla piramide, il cui asse è au, come md sta ad no.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Discorsi e dimostrazioni matematiche intorno a due nuove scienze
di Galielo Galilei
Utet
1980 pagine 293