E che, posta la proporzione dell'altezza dell'argine all'altezza del solido nel modo di sopra detto, la grandezza o piccolezza della superficie non faccia variazione alcuna, è manifesto da quello che di sopra si è dimostrato, e da questo: che i prismi e i cilindri che hanno la medesima base, son fra di loro come l'altezze; onde i cilindri o prismi, cioè le tavolette, grandi o piccole ch'elle sieno, pur che tutte sien d'egual grossezza, hanno la medesima proporzione all'aria sua conterminale, che ha per base la medesima superficie della tavoletta e per altezza l'arginetto dell'acqua; sì che sempre di tale aria e della tavoletta si compongono solidi, che in gravità pareggiano una mole d'acqua eguale alla mole di essi solidi, composti dell'aria e della tavoletta: per lo che tutti i detti solidi restano nel medesimo modo a galla.
Raccoglieremo, nel terzo luogo, come ogni sorta di figura e di qualsivoglia materia, benché più grave dell'acqua, può, per beneficio dell'arginetto, non solamente sostenersi senza andare al fondo, ma alcune figure, benché di materia gravissima, restare anche tutte sopra l'acqua, non si bagnando se non la superficie inferiore che tocca l'acqua; e queste saranno tutte le figure le quali dalla base inferiore in su si vanno assottigliando: il che noi esemplificheremo per ora nelle piramidi o coni, delle quali figure le passioni son comuni. Dimostreremo dunque, come è possibile formare una piramide o cono di qualsivoglia materia proposta, il quale, posato con la base sopra l'acqua, resti non solo senza sommergersi, ma senza bagnarsi altro che la base.
| |
|