Qualora finalmente sia vero ciò che dicevamo dall'inizio, che cioè la figura primitiva ed indivisibile dell'allume non è l'ottaedro intero ma il semiottaedro o la piramide, quanto dicemmo relativamente all'angolo del vertice e dei piani che lo compongono, resta inalterato, e varia solo la quantità degli angoli intorno alla base, ciascuno dei quali risulta dal retto e dai due angoli del triangolo equilatero, cioè di gradi 210 e l'inclinazione della base rispetto agli altri piani è poco più di 54 gradi.
CXXX. Finalmente nel vetriolo, per essere il parallelepipedo romboideo circoscritto da sei romboidi, nessun piano può insistere sopra un altro, oppure nessuna sezione comune di due piani sopra un'altra linea o sopra qualche piano perpendicolarmente, ma è sempre d'uopo che le inclinazioni dei piani e delle linee siano ad angoli obliqui. La diversità delle deviazioni [obliquità], altrove da noi osservate nei romboidi, differenzia parimenti le inclinazioni tutte, talchè ogni cosa si comporta in vario modo a seconda della diversità dei sali vetriolici; ma non perciò può mai avvenire che un qualche angolo solido riesca della stessa misura che l'angolo del sale muriatico, essendochè l'angolo che è minore di quello in una sola specie di sale vetriolico, è minore sempre anche in qualsiasi altra; e quello è maggiore, benchè la differenza cangi secondo la quantità della deviazione. Affinchè dunque si possa fare il calcolo di ciò, prenderemo a mo' d'esempio quella quantità di angoli che riscontrammo nel vetriolo romano, imperocchè i suoi piani romboidei hanno due angoli acuti di 80 gradi e due ottusi di 100 gradi.
| |
|