2° I getti d'acqua obliqui descrivono una parabola: dappoichè ogni molecula del liquido, che esce da un fianco del vaso, ritrovasi nella condizione di un proiettile lanciato obliquamente.
3° Sembrerebbe che dal teorema di Torricelli si potesse dedurre che in un tubo rivolto all'insù l'acqua, che cade in basso, dovesse acquistare la forza di risalire all'altezza del livello dell'acqua nella conserva; ma noi abbiamo testè accennato perchè ciò non possa essere(26.) Or bene: I. dalle sperienze di Mariotte si deduce che per uno zampillo di 5 piedi la conserva s'innalza di 3 piedi e 1 pollice; e che in generale all'altezza a del getto bisogna aggiungere tanti pollici, quante unità si ritrovano in (a/5)2. Per un getto, per esempio, di 15 piedi si richiede un'altezza di 11,5 piedi più pollici (15:5)2 = 32 = 9. II. Quanto ai tubi di condotta, Prony à ottenuto la seguente formula [vedi fig. mat059.gif], ove d è il diametro, l la lunghezza dei tubo, a l'altezza del livello dell'acqua sopra la bocca del tubo, per la quale esce l'acqua. Questa formula, ove l'unità sia il metro, vale purchè l sia almeno 100 d.
4° Dalle sperienze di Mariotte e di Desagaliers risulta che I. nei tubi grossi la velocità è minore, e la resistenza dell'aria, e dell'attrito è meno sensibile; II. giova evitare i gomiti acuti nel tubo, affinchè non accadano urti violenti; III. il getto è più alto e più trasparente, quando l'orifizio è inciso in una parete sottile sovrapposta orizzontalmente alla bocca del tubo.
5° Per ottenere la costanza di livello, della quale si parla nel Corollario 3°, giova meglio di ogni altro l'apparecchio chiamato il galleggiante di Prony.
| |
Sembrerebbe Torricelli Mariotte Prony Mariotte Desagaliers Corollario Prony
|