Pagina (51/438)

   

pagina


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

      Nella fig. 6, sia CD il piano ortogonale, OCO’D il piano diametrale, OO’ il piano fondamentale: A sarà rappresentativo dei poli della prima sfera, P del polo della seconda sfera finora designato con questa lettera: VV rappresenterà il circolo massimo indicato con APB nelle ligure precedenti, e l’argomento sarà l’angolo OAP. Essendo M la posizione corrispondente del pianeta, E il polo di VV, ON il parallelo a VV condotto per O, abbiamo veduto, che M si trova sul parallelo ON. Il piede della perpendicolare abbassata dal pianeta M sul piano diametrale OCO’D in questa figura sarà rappresentato dallo stesso M: ed OM sarà la distanza di questo piede dal punto O, polo del piano ortogonale. Ora dal corollario della Prop. V risulta, che questa distanza OM sta al diametro ON del parallelo in un rapporto costante. Il luogo dei punti M sarà dunque simile e similmente posto rispetto ad O, che il luogo dei punti N; sarà perciò un circolo tangente in O al circolo OCO’D. Ed è manifesto, che l’arco TM, il quale indica la distanza di M da T sul circolo, ha per misura il doppio dell’angolo NOO’, ossia il doppio dell’argomento PAO. Mentre dunque il polo P della seconda sfera descrive sul suo parallelo una circonferenza a partire dalla linea OA, il punto M descriverà nel medesimo senso due circonferenze sul circolo TO partendo da T. Siccome poi il rapporto costante di OM a ON è (Prop. V. Coroll.) quello della saetta AS (fìg. 3) al diametro AB della sfera: ne concluderemo che OT è uguale alla saetta ora nominata AS: che e quanto ci proponevamo di dimostrare.


Pagina_Precedente  Pagina_Successiva  Indice  Copertina 

   

Scritti sulla storia della astronomia antica
Tomo II
di Giovanni Virginio Schiaparelli
pagine 438

   





Prop Prop Coroll